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FOREWORD

This is the summary report on the Booster Attitude Stabilization Network
Synthesis. This report was prepared by Republic Aviation Corporation under
NASA Contract NAS 8-5016 for the National Aeronautics and Space Administration-
Marshall Space Flight Center. Thé work was administered by Nichola; C. Szuchy

of Republic Aviation Corporation, and Mr. Mario H. Rheinfurth and Dr. Helmut

F. Bauer of the Dynamic Analysis Branch, Aeroballistics Division, NASA-MSFC.
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ABSTRACT
377@

This report presents the impedance synthesis techniques and transfer
function factoring methods developed for realization of complex compen-
sation networks for the Saturn Booster. Two major divisions, 1) approxi-
mation, and 2) realization, result from the systematic approach to the

synthesis of the shaping network meeting NASA requirements.
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ml, 2(s)
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PR
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NOMENCLATURE

Capacitor, farads or microfarads
General voltage transfer function

Desired over-all compensation transfer function with unity DC
gain

Desired over-all constant resistance ladder network transfer
function with non-unity DC gain

Transfer function of the ith ladder network with non-unity DC
gain; i =1,2,3.

Transfer function of ith stage of ladder network

Modified transfer functions of the it‘h stage of the 2“d and 3rd

ladder networks, respectively
v -1

Over-all compensation gain for ladder network to give it unity
DC gain

Rea.hzablhty gain for the :ith transfer function, such that Ki
1.0
!'Re ) F.q oj :\

min
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SECTION I

INTRODUCTION

Attitude control of space vehicles is generally required to enforce
a predetermined flight path. The guidance system provides information
about necessary maneuvering and defines a required attitude for the vehicle.
With the evolution of large liquid-fueled rocket booster vehicles, additional
complexities in the problem of attitude stabilization have resulted primarily
from the effects of fuel sloshing and body bending. (1,2) Minimizing these
effects by solely mechanical means normally results in excessive penalties
in weight and system complexity. However, by introducing phase-shaping
networks 3) in the stabilization loop, stability problems are resolved
efficiently while avoiding the penalties previously mentioned.

Theoretical analysis of the system transfer functions permits the
determination of stability regions and i)oints of optimum stability required
for the phase-shaping network. Two major divisions, 1) approximation,
and 2) realization, result from the systematic approach to the synthesis of
the shaping network. The approximation area is fundamentally concerned
with the methods for determining rational functions approximating the re-
quired performance characteristics of the desired network within the con-
straints of the appropriate realizability conditions. Realization techniques
are then used to find explicit networks that are described by physically re-
alizable rational functions. Individually then, the divisions each form an
essential step, which collectively correlated form a technique for the total
synthesis of the Saturn Booster Attitude Stabilization Network.

The performance characteristics of the phase-shaping network are
defined in Reference (2). Through the judicious use of the flexible character

of the approximation problem, the given attenuation curve is approximated



by the addition of a finite number of semi-infinite slopes, each of which in
turn is closely approximated by the attenuation curve of a Butterworth or
Tschebyscheff function. The interrelationships between the attenuation and
phase requirements, tolerances, physical realizability, ease of construction
and alignment are considered individually and collectively in establishing

the appropriate rational transfer function.

The realization problem of the shaping network is concerned with the
purpose of defining a suitable optimum combination of linear, passive,
lumped networks in order to realize the prescribed rational transfer function.
Three general synthesis methods are known that will lead to a network con-
figuration, namely:

1) Brune procedure
2) Darlington procedure
3) Bott-Duffin procedure,

The fourth procedure, that of Miyata, is restricted in the sense that
it cannot realize every realizable impedance; however, it is often useful as

an alternative to the Bott- Duffin procedure for obtaining networks without
transformers.

The non-uniqueness aspect of circuit-synthesis allows for an infinite
number of circuits which may have the same response or function at specified
points of access, while still satisfying the requirements at the terminals.

The synthesis technique used for the Saturn Booster Attitude Stabilization
Network considers the makeup of the network as a tandem connected sequence

of constant resistance sections, each one of which imposes constraints on

the prescribed rational transfer function. Then the required network is
synthesized by any one of the general procedures, and the network configurations
containing fewer elements are chosen. Figure I-1 represents conceptually

the over-all procedures used for the network synthesis operation,
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SECTION II

APPROXIMATION

The following items will be discussed in this section:

¢ Piecewise linear approximation

®  Butterworth Polynomials

® . Tschebyscheff Polynomials

®  Approximation of NASA specification

A. PIECEWISE LINEAR APPROXIMATION

By considering an impedance function Z{s), it may be noted that the
amplitude (magnitude) function | z (w) | is an even power of the frequency,

i.e.
L P) i j CN
Y as nn n
1=0 # _i=oN{"i)i= oQN(‘” ) (I-1)
268) " m Tk b Zon
r®m®* 0 LpMdn Qp B2R
m=0 k=0 h=0 "“Dh
m, (8) + n, (8)

or Z(s) = (I-2)

m,(s) + n,(s)

The m's and n's represent the even and odd part, respectively, of the
numerator and denominator. When s = jw, the m's will be real, while the

n's will be imaginary. Separating Z(s) into its even and odd part results in

ml(s) + nl(s) mz(s) - nz(s)

Z(8) =m2(s) +n,(8) ° m, (8) - n,(8)
i m,,(8) -0, n,(s) \ m,n, (8) -m ny(8) (I1-3)
mlz(s) -n22(s) m22(8) - 1122(9)



"or semi-infinite slopes. Since the transfer function is characterized as a
quotient of two finite degree polynomials, - the mathematical expression for

the semi-infinite slope approximation must be a rational function. The system

or transfer function is constructed from the amplitude specification, then checked
to see that both amplitude and phase specifications are satisfied. Adjustments

to the transfer function are made in two ways, 1) by modifying semi-infinite

slope approximations, and 2) by adding particular gain and phase characteristics
to the derived system function outside the system frequency response require-

ment. Normally both methods are judiciously used to satisfy the amplitude and
phase specifications, '

The approximation problem then is the determination of a system function
that on one hand approximates the given requirement within the specified tol-
erances, and on the other, is realizable by a network of the desired form. In
other wordé, one has to fit a realizable rational function to the specified data,
that is, determine the coefficient of the twc polynomials, or equivalently,
determine the zeros, poles, and constant multiplier of the rational function.

It is also desired that the function be of the lowest possible order so that a small
number of elements will be required for its realization. The Butterworth
polynomials and the Tschebyscheff polynomials are known to possess the

desired properties and consequently are used to approximate the magnitude of
the transfer functions.

B. BUTTERWORTH POLYNOMIALS

The magnitude requirement is empirically approximated by semi-infinite
slopes for which a mathematical expression has to be derived. The choice of
Butterworth functions is a logical suggestion, because:

1) for large values of wthe function approaches the
semi-infinite slope as its asymptote;

2) from the theory of filter design their roots are
known and tabulated;

3) they actually fit semi-infinite slopes very smoothly
by a margin of not more than 3 db.




The substitution of s = jw into an even polynomial gives a real number,

while the substitution into an odd polynomial gives an imaginary number, i.e.,
| = ‘ = 3 = 2 -
Even part of Z(s) §=jw Ev Z(s) s=jw ReZ(jw)=U(w) (II-4)

Oddpart of Z(s) | . =0dz(s) | . =jImZ (W) =] V(w). (O-5)
8=jw s=jw

Therefore the amplitude function of Z(s) is described by an expression of
the form

)
by
ol

(11-6)

It follows from an examination of the above expression that the asymptotic
behavior of any physically realizable impedance is characterized by an even
power of frequency, or

lim  |Z(jw)| 2 = constant x w?" (1-7)

W

where n is positive or negative integer. To this corresponds a gain (or

attenuation) measured in decibels of

A(w®)=101log | Z (w)| ?=constant + 20n log | . (I-8)

If one plots A (o.‘z) vs log 10 €~ which is conveniently done on semilog paper
(Bode Plot) - the curve will be a straight line. This straight line, or semi-

infinite slope, is the asymptote to the curve of the amplitude function, and has

db db .
a slope of 6n ootave 20n Jeoade Any other slope cannot be approximated

with a finite number of terms, or physically realized by a network with a finite
number of components. The above considerations therefore limit the available

semi-infinite slopes only to those including an angle of 6n (%‘):— with the abscissa.

The Bode plot of the NASA specification for the phase stabilization

network is first approximated as a finite number of piecewise linear lines

-3




The Butterworth function of order 2n is given by

2 2, _ 2n
By (w7 =1+w™, (0I-9)
For large values of w
2 2 2n
Bop (W)= w™ (I1-10)

A semi-infinite slope of 6n db/octave, but with a cutoff frequency
different from unity (1), obviously is appruv«imated by

2n
2, _ w -
BZn(w)—1+(———w0> . (II-11)

The roots of the Butterworth function of B2n(w2) are the 2n roots of
(-1). This follows directly from noting that the amplitude response
an( wz) and the complex system function T (jw) are related by

Bgn () = T(jw) T(-jw). (I-12)

Defining a new function h (32) such that

h(s?) = T (s) T(-s), @-13)
it may be noted that

an(wz) =h(-wd). @1y

From h (- w2) all that has to be done is to substitute 82 = -w2 to get

h (s%). Then h (32) is factored into the product T (8) T (-s). Since the poles

and zeros of T (8) are the mirror images of the poles and zeros of T (-8), 1.e.,
they form symmetrical patterns on the unit circle about the origin in the s-plane,
one simply chooses the Hurwitz factors of h (82) as T(s). '

An example will be used to clarify the above discussion. Consider the
third order (n = 3) Butterworth response given by

Bgn (wz) - Bg (wZ) 1 _ 1 (II-15)

1erG 3

1-(-u)




. h(sz) i

3
1-(s%)

Factoring h(sz), one obtains

b =(— 53 (

1+28+28 +8

=T(s) T(-8),

therefore

T(8) =——

3 2

8 +28 +28+1

1

1-25+2s2 —83

(8+1)(8+3+]j

/3

— ) (s*

(I1-16)

(-17)

(1-18)

(T1-19)

(I1-20)

The poles of T (8) and T (-8) are shown in Figure II-1, Note that the poles

of T (-s) are the mirror images of the poles of T (s).

I

\/é\
/ \\

Figure II-1. Poles For the Butterworth Function, n = 3

For a Butterworth response, the poles T(s) T (-8) are the roots of

(_l)n B211 =1

- INEK-Y)

\
X

\ /

S

K=0,1,2, ..., 2n

(I1-21)

(I-22)



The distinct 8 values are then given by

. n[z K-1
Sk = ¢ 2n forn even (I-23)

_ K
SK'_ jn( _ﬁ

¢ ) for n odd (11-24)

or in general,

g = jn[zKH"l
K ¢" 2n forX=0,1, 2, ..., 2n, (11-25)

Expressing 8 88 S = UK + jo.k’ the real and imaginary parts are

given by
T, =cos EEZR) 1 - gin (g-l%i> = (IL-26)
= gip @K+n-1) o _ K-1> n (I-27)
Wy =8in =—=—" T cos(jzn 5

It may be noted from the above that all the poles of T(8) T(-8) are located
on the unit circle in the s-plane, and are symmetrical about both the ¢ and the
jw axes. To satisfy the realizability condition, one associates the poles in the
right-half plane with T (-8) and the poles in the left-half plane with T(s). To
simplify the use of the Butterworth functions, T (s) is given in Tables II-1 and

-2 for n=1to n =8, in factored form or in polynomial form.

1¢




Table II-1. Coefficients of Butterworth Polynomials

al a.2 3.3 3.4 3.5 3.6 a.7 aS
n=
1 1
2  1.414 1
3 2 2 1
4  2.613 3.414  2.613 1
5 3.236  5.236  5.236  3.236 1
6  3.864 7.464  9.141  7.464  3.864 1
7 4.494 10.103 14.606 14.606 10.103  4.494 1
8  5.126 13.138 21.848 25.691 21.848 13.138 5.126 1

Table II-2. Factors of Butterworth Polynomials
P_(X)

n=
1 (@1+2)
2 (1+1.4142 1+ 2%
3 @+d) @+ard
4 (1+0.7653\+ X%) (L+1. 8477x +2%)
5  (1+A) (1+0.6180\+)°) (1+1.6180A+\2)
6 (1+0. 51760+ X2) (1 +1. 41423 +2%) (1 +1.9318\+ 29
7 (L+X) (1+0.44490+2%) (1+1.2465)+2%) (1 +1.8022) +12)
8 (1+0.3896)0+X0) (1+1.11100 +2%) (1 +1.6630x A2) (1+1.9622) + )

C. TSCHEBYSCHEFF POLYNOMIALS

A rational-function approximation of the desired finite frequency
specification can often be found by using a particular set of orthogonal

polynomials known as Tschebyscheff Polynomials of the first kind, defined
as:

11



cos (ncos ™t w) lwl| =1 (I-28)

C, (w)

cosh (n cosh ™ w) |w|>1 (I1-29)

and possessing the orthogonality relation

0 m #n
1 dw _
Il C (w) C (w) 2 I m=n#o0 (LI-30)
- —w E—
n m=n=90

For n=0

C0 (wy=1. (O-31)
For n=1

C,(w) = cos(cos™ w) = w. (II-32)

Higher order Tschebyscheff polynomials are obtained through the recursion
formula

Cn( w) = 2w Cn_1 (w) - Cn_2 (w). (IX-33)
Thus for n=2
02 (w)=2 wCl( w) - CO( w) - (I-34)
' 2

=2w-1. (I1-35)

To simplify the use of Tschebyscheff functions, Cn( w) is given in Table II-3

for n=1 to n =10,

12




Table I-3. Tschebyscheff Polynomials of Order 1 to 10

T, (o)
n
1 w
2 2w2 -1
3 1w’ - 3w
4 8w - 8w’ + 1
5 3
5 166:° - 200° + 5w
6 3205 - 4800* + 180 - 1
7 640’ - 11205° + 56° - 7w
8 6 4 .02
8 128w - 256w + 160w™ - 32w + 1
9 25607 - 576" + 4320° - 1200 + 9w
10 8 6 4, o2
10 512010-1,28008 + 1,1200° - 4000* + 500° - 1

It may be noted from Table II-3 that the Tschebyscheff function
02 n( wz) of order 2n is a polynomial in wz of highest power 2n, in which

the coefficients that are chosen to make the function oscillate between plus
and minus one within the interval -1 <w <+ 1., Tor 1 w\ > 1, the function

assumes rapidly increasing values.

Applying Tschebyscheff polynomials to the approximation problem results
from a consideration of the function 62 Ci (w), where € is real and small

compared to 1. It may be noted that 620121 (w) will vary between 0 and 62

in the interval jw|s1. The function

[
(w? =1+’ (w (II-36)
where n is a positive integer, obviously oscillates between 1 and 1 + 62,

within the same interval -1< @ <+ 1., The cutoff of function of this type is
much steeper than that of the Butterworth functions.

/

2
The roots of the functions CIZl (w™) (derived from Tschebyscheff




functions) are known(4), and may be obtained graphically from the root star
of Butterworth function of the same order, as shown in Figure I-2. Each
root vector is prolonged to its intersection with circles of radii a and b,
and the points of intersection are projected horizontally and vertically on
the ellipse with the long axis 2b, and the short axis 2a, where

RS |
a = cosh cosh (1/6):]
2n
(11-37)
-1
b= sinh [ 22511/ |

jw cosh 3,
/,1'7'—'\ﬁ\\
/ / ] [BLY \\
/ ! } \
/ o ! ENTA \
/ 60° | N~ -~ \
'y I\ \
/ ¥ AN \
! / | by \
AV N G
\ ||\' ) ”: ,’
B \\ ‘\ :\~- : / ’,
sinh \ !
k v /
AN AYN A Vg \ BUTTERWORTH

\.Lx-..*i" POLE LOCUS
TSCHEBYSCHEFF PCLE LOCUS

Figure II-2. Poles for the Tschebyscheff Function, n = 3

From the above figure it is apparent that the Butterworth approximation is a
degenerate form of the Tschebyscheff approximation in which the ellipse

becomes a circle.
D. APPROXIMATION OF NASA SPECIFICATIONS

1. General
This section describes in detail the procedure that was used to
select a rational function, identifiable as the response function of a realizable

14




network which approximates the NASA specified magnitude and phase
characteristics. The very nature of the way the requirements were defined
immediately suggested a graphical or semi-graphical technique. The
approximation problem is solved in a systematic manner, in essentially
four steps, yet retains the flexibility needed for modifications to do the
interrelationship between the attenuation and phase requirement.

First, the gain and phase specifications are plotted on a decibel
versus logarithmic frequency scale and angle versus logarithmic frequency
scale curves. Second, a curve satisfying the attenuation requirement is
approximated by a succession of straight lines. Third, the corresponding
mathematical expression is developed. Fourth, the continuous curves re-
sulting from the mathematical expressions are plotted and checked against
the attenuation and phase requirements. Then any corrections necessary to
meet either attenuation or phase requirements are used to modify the
approximating expression and it is again checked against the specification.
The iterative process converges rapidly to a satisfactory mathematical
expression. It may be noted that by the use of sufficiently large number of
straight-line approximations, the approximation to any continuous curve could
be made as close as required.

2, NASA Specifications
Figure II-3 shows the required NASA specification; the boxes
represent the maximum phase stability requirement while the attenuation is
indicated by dotted lines, -on a "Bode plot." Consider the succession of
semi-infinite slopes S1 , Sz, S3 in Figure II-4 limited only to those including
an angle of 6n db/octave with the horizontal axis. If is evident that, by a
simple addition of these slopes, the broken line curve A is obtained, which

may be considered as an approximating curve satisfying the requirements,

A semi-infinite slope of 6n db/octave, with a cut-off frequency
different from unity, can be approximated by a Butterworth function of order
2n of the form

w - 2n
an = 1+<TU-0/ (II—38)

15
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where ’
Butterworth function of order 2n

o)
i

2n
w = frequency in radians
Wy = break frequency.

The three slopes of Figure II-4 have angles of -6, 18, and -36 db, and cut-
off points of 4, 20 and 45 radians, respectively. The corresponding attenuation

function is

a w \'.6"
IFGu)P = L +g%/ 12
7w i \ 1I-39
LG+ () (0-39)

The roots of the Butterworth functions are the 2n roots of minus
one (-1). Table II-1 tabulates all coefficients for Butterworth functions up to
the eighth order. For synthesis problems it is more convenient to group only
conjugate complex roots together; they are presented in this fashion in Table
I-2. Using Table II-2, the transfer function corresponding to IF (w) |2 can

be written as

2
S ,200.9 g4

'8
F (8 = l_zo 1] 57 T (L1-40)
1 i { ] &2
l_%+ 1 2+ 0. 26 sH — 2 2—1———10 1) 41 ——2 —L—————L045965 8+1
45 45 45

Since in the present application the phase angle is of importance,

-the phase angle of the above function is plotted and compared with the specification

as shown in Figure II-5.

By applying lead, lag and quadradic correction factors outside the
response of the system, a mathematical representation of the transfer function

is developed

0.5\ 0.4
S\ () (55 (L) Q(355) (m-a

0.7°" ~70.96 96T L(4) L (2000 0.26™
(45/ NED) (4) L(2000) Q( 265 L (2000)
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that satisfies the NASA specifications, as shown in Figure II-6.

The curve-fitting procedure outlined above gives rise to a
transfer function which possesses the desired gain-phase characteristics.
However, it must now be ensured that this function is realizable by a passive
network. The requirements for this assurance are: 1) the transfer function
must be stable; 2) the degree of the numerator of the transfer function must
be less than or equal to the degree of the denominator. The first require-
ment is ensured by the nature of the curve-fitting procedure. The second
requirement, however, is not usually met by the function resulting from
the curve-fitting procedure. The method of meeting this requirement
consists of adding simple lag-type factors to the transfer function. These
factors are chosen so that they do not appreciably alter the gain-phase
characteristics in the region of interest. The transfer function consisting
of the terms obtained from the curve fitting with the appropriate factors
for realizability by a passive network appended, is termed the desired

network transfer function.
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SECTION II

REALIZATION .

It is observed that the character of the NASA requirements requires
that the desired network transfer function be of high order, i.e., about ninth
order. The synthesis of a network realizing a transfer function of this
complexity becomes quite unwieldy by conventional techniques. An even more
difficult problem is the determination of the effect of component tolerances on
the network transfer function. For these reasons the constant resistance
network approach was chosen. These networks have the property that one
stage does not load another. Thus, the stages may be separately synthesized
with component transfer functions that are the desired factors of F I’) (s). The

most complex form of these factors is a quadratic over a quadratic, termed
a biquadratic.

Of the impedance topologies which may be made to exhibit this constant
resistance behavior, the ladder configuration was chosen because of the

following advantages:

1) relatively low sensitivity of the particular transfer
function to component tolerances;

2) desirability of a common ground.

In order to be realizable in the form of a number of cascaded stages
of a constant resistance ladder network, the transfer function must be broken
down into factors which are realizable as passive networks and which possess
in addition the following properties:

1) they must be minimum phase (no zeros in the right
' half plane);

2) they can have no poles on the imaginary axis;

3) they must be positive real, non-minimum (PRNM).

23




As described in Appendix A, the necessary and sufficient conditions for a
rational function (F(s) = N(s)/D(s) ) with real coefficients to be positive real
non-minimum are that F(s) has no right half plane poles, that F(s) has only
simple 1\)oles on the imaginary axis with positive and real residues, and that
ReF (jw) > 0 for all «t. Appendix A gives requirements on the coefficients
of the realizable linear and quadratic forms of N(s) and D(s) for F(s) to be
PRNM.

The first two conditions are ensured by the method of curve fitting
(Butterworth Polynomials). The third condition must be achieved either by
judicious grouping of the factors of Fl')(s) or by the introduction of realizability
factors as explained in Appendix A and Section IV, It is to be noted that, while
each of the factors to be realized by one stage of the ladder network must be
PRNM, the over-all transfer function does not have to satisfy this require-

ment.

One other item of great importance in the factor grouping operation is
the DC attenuation of the associated ladder network. First, as will be de-
scribed, a gain factor must be applied to the component transfer function in
order that the branch impedances of the associated ladder network stage are
PR MR functions, * as required by the impedance synthesis procedures.
Amplification must be supplied which compensates for this factor and makes
the ladder network DC gain unity. Unless care is exercised in the factoring
process, the amplifier gain required will become excessive. A final item is
that care must be exercised in order to generally minimize the number of
passive elements and keep their values reasonable. The considerations

presented above are utilized in the iteration process as shown in Figure I-1

* A PRMR function denotes a positive real, minimum resistance function,

Z (j w), whose real part vanishes at some w, i.e., ReZ (j wl) =0.
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The synthesis procedures used for the branch impedances of the various
ladder network stages are summarized in Table III-1. The types of component
transfer functions that will be encountered and the corresponding methods of
branch impedance synthesis to be employed are given in this table. This
subject will be discussed in detail in the following section.

Table III-1. Synthesis Procedures

Component Transfer Function * Method of Branch Impedance Synthesis
1 s+a R
s+a °* s+h Inspection
8 +w 2
L 8 +bs+c R .
’ Continued fraction expansion

82+bs +c 8+ d(s+c)
s“+bete  (sta)(s+h) Bott- Duffin

2 * 2 '
8 +bs +d s +cs + d)

* a, b, e, d, and e real and positive

It is noted that, while the factors of the desired transfer function F]; (s)
that are obtained from the approximation process have a unity DC gain, component

transfer functions of the form shown in Table III-1 with a non-unity DC gain were
realized in the network synthesis operation. Allowance for this difference is
provided in the compensation gain (K'I‘) for the over-all ladder network.

A. CONSTANT RESISTANCE LADDER NETWORKS

1.

General
The following items will be discussed:

1) functional relationships between the stage transfer
functions and the associated branch impedances of a
constant resistance ladder network;

2) cascading of such stages in a ladder network;
3) assumed network load characteristics;

4) realizability conditions on the component or stage
transfer functions;
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5) determination of the realizability gain factor for these
component transfer functions;

6) determination of the required compensation gain for
the over-all ladder network.
2. Transfer Function and Branch Impedance Relationships
The structure of the 2-port* network representing one stage of a

constant resistance ladder network is presented in Figure III-1.

+ o Zy T
i Zjp—= Z, V2 [rR,
- ° I S

Figure OI-1.) lLadder Network

The input impedance of this network, Zin’ is readily found to
be:
¢ 1
) Za (Zb + RL (II-1)
in ‘ :

. /
Za oy Ry

To satisfy the constant resistance condition, it is required that Zin = RL. The

network impedance functions are then related by the following expression:

/

z, = R (L+R /2. (II-2)

In order to simplify the initial synthesis considerations, let RL be normalized
to unity so that:

Za =1+ Yb . (II11-2a)

where the admittance Yb = Zb-l. This, then is the condition for the ladder

* The term "2-port" will mean a network which has two accessible pairs

of terminals, i.e., an input and an output pair. A "l-port," will mean a

network with one accessible terminal pair, suchas 7z ' and Zb "
a
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network structure to exhibit a constant resistance property. The network

transfer function is:

-V R
2 _ L _ 1 . I-3
F(e) =g - () = EEAC) .

1 R + Zb(s)

Again, in the third equality RL has been normalized to unity.

Equations (III-2) or (III-2a) and (III-3) are the design equations for the
constant resistance ladder networks. Given the desired component transfer
function, Equation (III-3) is used to obtain the required branch impedance
function Zb‘ Equation (III-2) is then utilized to obtain the corresponding Z ar

3. Cascading Stages of a Constant Resistance Ladder Network
Suppose that 7 ladder stages are cascaded together as shown in
Figure II-2,

,r‘.;{sTAes‘ll [ swace |
e By
2% | | | |
ZoR | o A | & v,
\/ : l Zol ‘ Zi =R 9 l n §RL
— | - |
9 | | |
| | | |
Lot —|—o—

Figure I1-2. Cascaded Constant Resistance Ladder Stages

The input impedance looking into any stage is RL. Hence each
stage is loaded by the same resistive load RL’ but each stage has been
1, 80 that,
if the network is excited by an ideal generator (Rg = 0) and the load resistance

designed to yield the desired transfer function when loaded by R

is taken as unity, the network transfer function is:




n
F==2 -7 F -F F, ... F.. (II1-4)

n

The form of this equation shows the usefulness of using the constant
resistance approach in the synthesis of high order transfer functions, i.e., the
transfer function may be broken down into a product of simple transfer functions
and synthesized "piece by piece." The transfer function must be broken down so
that each component transfer function fulfills the realizability conditions of the

previous section. This is relatively simple to do, utilizing the methods presented
in the appendix.

It is important to note that this ability to build up the network stage
by stage is practically very useful. Each stage may be tested and '"tuned up"
before cascading it so that the effects of component tolerances and non-ideal

elements may be taken into account much more simply than if the total transfer
function is realized in a stage.

4. Network Load Characteristics

It is seen from the foregoing material that, in order for the method
presented to be valid, the‘network load must be resistive. A more precise
statement would be: The load must ""look" resistive over the frequency region
of interest, i.e., if the network is being synthesized to produce a desired

transfer function over a frequency range specified as 0 <w < @ 1’ then the load

must look resistive over this range. By this is meant that the frequency re-
sponse of the load must behave as shown in Figure III-3, i.e., the load
impedance must not have a significant phasge shift in the frequency region of
interest. This is the real criterion for applicability of constant-resistance
transfer function synthesis.
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lZ

Figure III-3. Load Impedance Frequency Response

For the network synthesis work conducted under this contract, the

load impedance has been taken as resistive with RL = 800 ohms.

5. Realizability Conditions on the Stage Transfer Functions
The necessary and sufficient conditions which a component transfer

function must satisfy in order that it can be realized as a voltage transfer
function for one stage of a constant resistance ladder network are next discussed.

a) Necessary Conditions

V2
|F(jw)|=|—\—,— Gw)| s1forall w.
1

This can be seen from Equation (III-3) since F(jw) = ZLTZ}—(J_BT

whﬂé Z, =o+ jﬁ witho > 0 for all « by virtue of the fact Z, must be PR.

b
Hence, | F| = - <1 for all w. Note that'this condition implies
|_(1 ra)f+ g% |2

that F can have no poles, finite or infinite, on the imagiﬁary axis.

b) Sufficient Conditions

From Equation (III-3):

-1 (II1-6)
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To meet nominal realizability standards for a general ladder network with
assured stability of operation, it is first required that F be a minimum phase

function with no poles in the right half plane (unstable poles). Now if Zb is

to be PR, then Re Zb (j w) 20 for all w; hence, Equation (III-3) requires that

Rel_ J iL—(J'—“’—)—2—3z1. (II1-7)
lFo w)|

Equation (III-7) can be satisfied only if:

1) Re|F(j w):' > 0

2) a constant K is chosen such that

Re | —% _ :] > 1 forall « . (0I-72)
T FGw)

All such realizability gain factors which must be introduced for the component
transfer functions to make the associated branch impedances realizable must

be accounted for by a compensating gain factor for the over-all ladder network.

c¢) Summary

If a transfer function F is to be synthesized by a constant
resistance ladder stage, the necessary and sufficient conditions on the transfer
function may be stated as follows:

F must be a positive real function (hence minimum phase with
no unstable poles) with a non-vanishing real part, and with no poles, finite or
infinite, on the imaginary axis and a gain factor must be applied to it such that
Equation (III-7a) is satisfied. Actua]ly, K is chosen so that K Re [ 6 @) :’ =1
to simplify the network synthesis operation. minimum

Table II-1 and Appendix A enumerate the allowable forms for
F to be a positive real, non-minimum (PRNM) function as required. Only

rational functions in the Laplace variable s, with at most a 2nd order numerator
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or denominator, are considered. * This is because these are the types of
factors introduced in the over-all transfer function by the approximation
technique used for meeting the gain-phase requirements. The following sub-
section defines the procedures to be followed for determining the required

realizability gain factor F, i.e., a K such that KRe [Fl - :! =1,
I€ Shinimum

6. Determination of the Realizability Gain Factor for the Stage
Transfer Functions

1
sta

For first order component transfer functions, i.e., F(s) =

s +a . - 1 =

or the choice of a positive value for K such that K | FGw) ‘minimum- 1

is equivalent to the value for K satisfying KRe [-f%—ln =1, I
= U« inimum

1 8 +a

-1 ; is = -5Ta
Fl(s) “s+a’ then the required value for K1 is =. i F2(s) = 57D’ then

if a>b, K, = 18;_’ while if a <b, K, =1. The branch impedance functions

for such simple stage transfer functions, given by Zb(s) = -1 and

K_
F(s)

Z (8) =1+ ——]:——, can be determined by inspection.
a Zb(s)

Formulas are next derived for the realizability gain factor K for
the following component transfer functions:

* It is again observed that the order of the numerator of F can at most
equal that of the denominator for F to be realizable by a passive
network.
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1) a simple lead over a quadratic,

V2 B B s+wL
v, ~F3® = 5 3
1 s + 2§ wns+wn
(II-8)

2) a biquadratic

2 2
v, ) 8 +2C1wnls+wn1
<= =F (8) =
1 4 82+2C w_o8+w 2

27"n2 n2

It is assumed that F3(s) and F 4:(s) are PRNM functions as defined
in Appendix A, so that the required value for K can be found.
v 8+ wy

2
7 = Fgle) =
V1 3 sz+2Cw s+wn2
n

a) Lead-Quadratic Case,

For the sake of uniformity in equation development for this-
case and the biquadratic case, the following substitution of coefficients will be
made;:

Y 8%7,

let Fyls) = — : (I11-9)
8 + n_lS + nz

= . = . = . = 2
where Y1 =1; 72—wL,n1—2C Wy By =W

¢
The reciprocal of the frequency characteristic of the transfer function is

2 .
S R (I1-10)
Fa(jw) YotV i@

Meeting the constraint that the minimum value of the real part of Equation (III-10)

times the realizability gain factor K, shall be equal to 1 requires that

3

2
- ')’2 n2+(y1 nl—‘yz)w - -
Ky | ) 5 | = Kyl f(w) ]m =1. (W-11)

+ )
Y 2 Y« minimum inimum




Choosing K3 to be the larger of the values K3 ' and K3” such that

-V, D Yiy-=7
Ksll_ 2 2] =1 and Ks”"[—-l—lz—z:] =1 will ensure that the expression
v Y
1

2
2

K3 [f (w) :] willbe > 1 for all « with a minimum value = 1 at some

«, . Thus K, must be chosen to be the largest of the values which make

i

2
Y. - w
K,’ [—222 :' =K' |2 ]=1, and
w
Y9 L
(111-12)
Yy =Y
«71 71 27 _ ” =
Ka[ 2 :]_K3(2cwn-wL) 1.
61
w
T . L 1 >
Hence K3—max1mum< 2 ' 2le -w (I11-13)
w n L
n
v sz+2C w, 2+w 2
e e 2 1"l nl
b) Biquadratic Case, ‘TT=F4g(s)= 3 — =
1 s +2§2wn23+wn2
82+‘)’18+‘)’2
Let F 4(s) =3 (0I-14)
§° +n; 8+n, .
hi =2 = 2, =2 = 2
where YpT20 Wy, YTy By T2 5w, B =0

The reciprocal of the frequency characteristic of this transfer function is:

2
_ 1 _ e 4injw (III-15)
By cP ey e

1
and th lpartof ———7—r is
e real p F4 G &)
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4 2
1 @m0ty n)w Yy
Fy(w) 2

f(w) = Re (I1I-16)

4 2, 2
w-(zy?._yl)w +Y2
To find a K4 such that K4 i_f(w) ] =1, the procedure
minimum
employed is to compute the minimum value for f («) and then take K 4 to

be the reciprocal of this value. (Again it was established in the reference that

by previously requiring V2 to be positive real, non-minimum, i.e.,

1
-V
Re va ] > 0, then f (w) is >0 for all w and therefore such a K does
1
exist.)

To find the minimum value of f (w), the first derivative of
Equation (III-16) is set equal to 0, and solutions are obtained for the frequencies
Wy, at which the local minimum or maximum values of the function occur,
Following this procedure gives

w1=0

=Y (Yg-1y) *»-ﬁlz Yol (Vg = YRy )Yy B+ (Y, ‘“2)2 ]

and w =
2,3 Y (Yi-n.)~ (Yo -
1(Y1707)- Op = 1)

- (III-17)

Choosing only real, positive values for Wy and substituting in Equation (III-16)

determines f (w) at its local minimum and maximum points.

Selecting the absolute minimum of these values, Fo(w), the gain

factor K 4 that will make K4fo(w) =1 1is of course
P!
% = [ (t0-18)

c¢) IHlustrative Examples

An example of each of the foregoing cases is chosen from the
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natural factors of the over-all NASA transfer function which is to be
synthesized.

For an "acceptable" (i.e., PRNM) lead-quadratic factor

s + 20 __» a K must be chosen such that the branch impedances of
82 + 23. 48 + 2025
1 8 + 20

the ladder stage that has the modified transfer function X 5
s~ + 23.48 + 2025

w

are physically realizable. Using Equation (II-13), K must be = ——% =
(7
n

= 1 __ _ 0.294. In this case the

. 1
= 0.0099 and > 28w - w; | 23.4-20

2025

stronger constraint is K 2> 0.294, so that K is taken as 0.294. (Since the

lead-quadratic term is modified by the factor —1}? in order to make it realizable,

a compensation gain factor equal to K has to be provided external to the ladder
network. )

s2 + 208 + 400
s2 + 638 + 2025

An acceptable biquadratic factor is A K

is chosen using the following procedure. From Equations (III-17), Wy 5 3

=0; 39.82; 10.65. Substituting in Equation (II-16) gives the respective values
for f (w), 5.06; 0.724; 5.418. Since the minimum is 0.724, from Equation (III-18),

L_ .1 38

K= T ~

Again, the associated branch impedances for each of the

. . _ K - 1
preceding cases are obtamed_by Zb “Fe) T 1 and Z“1 1+ Zb
7. ADetermination of the Required Compensation Gain for the

Over-all Ladder Network
A compensation gain factor, KT’ must be provided for the

over-all ladder network so that its DC gain is unity. To simplify the following

discussion concerning the determination of KT, consider as an example the
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required component transfer function:

¢ _ L' _a%*?!

F, (8)
i ’
L (b)
While this is the canonical form in which transfer functions are usually

specified with a unity DC gain, actually the following transfer function is
synthesized:

(1I1-19)
s+1

oo

..1;_. Fi(s) =

=

2

by

The realizability gain factor, Ki , is determined as the smallest positive
number which satisfies the inequality:

s +a = L (a)
Ki (s +b) Ki L(b)

Fi' (s) = (LI1-20)

__._1___] = s+b -
K, Re LFi(S) K Re 53221 (LI-21)

- 1
The value for Ki is thus chosen so that for the wy at. whlph Re [F Gw )]

. . 1 _
is 2 minimum Ki Re |:F(jw1)]_ 1.

The branch impedances of the associated stage of the constant
resistance ladder network will then be caused to be positive real, minimum

resistance (PRMR) functions. This is required by the synthesis procedures
to be used for these branch impedances.
For a lag-lead factor, i.e., a > b, it is noted that *

Ki = % and w, = 0. For a lead-lag factor, that is, a <b, Ki =1 and

The relation between the desired component transfer function

Fi' (s) and the synthesized transfer function Fi(s)/Ki is:

i

Fi' (s) g K, [Fi(s)/Ki] (TI-22)

Thus, the required compensation gain for this factor is K‘I’ =§ i since
i




¢

F (s) has the desired DC gain of unity. In general, assume that the desired
over-all transfer function F (s) with a DC gain of unity and acceptable
factoring is given by:
7 ) 7
, , ,  N'e N N@)
FD (8) = Fl(s) F2 (s)... F n(s) =— . ... - (I1-23)
D '(s) D,'s) D '(s)

Then, the synthesized transfer function F D(s) will be given by:

N, () Ny () ] -, N (s) 2

Fps) = K Dl(s):][l{z b, 4 l_‘K‘n D_(5)

and the required over-all compensation gain factor KT for the ladder network
is:

D, (0) D 4 - Dn(O).l
[Kl Nl(O):]LKz N, 4 Xa EROR (I1-25)
= oo ¥
Ry Ty
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B. BRANCH IMPEDANCE SYNTHESIS PROCEDURES
1. General

This section describes in detail the three procedures that are used to
synthesize the 1-port branch networks of a constant resistance ladder network with
the desired compensation function as its over-alltransfer function, Table HI-1 of
section III delineated the realizable forms of the impedance functions for these
branch networks and indicated the three synthesis procedures to be used: continued
fraction, Bott-Duffin and modified Bott-Duffin. A fourth procedure is implicit in
the synthesis operation; it is the recognition of simple first order impedance ele-
ments by inspection,

2. Continued Fraction Expansion
a) General

For those cases where it is applicable, i.e., where a zero or
pole of the given impedance function, Z (s), is on the imaginary axis, the method
of continued fractions yields a particularly simple realization, The paragraphs
below outline the method and illustrate its use in the constant resistance ladder net-

work synthesis problem.

Consider the 1-port network presented in Figure III-4(a) whose
impedance is Z. Assume that Z can be expressed as the sum of a simple impedance

. . _ K
function Z1 (i.e., Z1 =K s, S

R K(s2 + a2) or K—2+ a2 and a remainder Zzl. (This
S .

is always true if Z has a zero or pole on the imaginary axis.) Then, as in Figure

11I-4(b):

A A A A
Z
1 e [yI vile [y Y Z Y Y
o YZ'z" 2 2 2 4 2 4
o 21 | |
| o
A A A’ A

{a) (b) (c) (d)

Figure III-4. Some Impedance Configurations
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Z=2 + zz’=z + (I11-26)

1
1 re

Y2
The admittance Y2 * is next considered to be composed of the ele-

ments depicted in Figure III-4(c). Then, Y,  may be expressed as:

2
' 1 _ 1 -
Y2 _Y2+-Z—3_ﬁ:_Y2+Z 1 (I1-27)
3 Y4

Substituting Equation (III-27) into Equation (II1-26), the impedance of the network
shown in Figure ITI-4 (d) is:

Z=Z, 6+ 1 .
S S

2 Z,+ 1
3Y

4

It is seen that the philosophy used to obtain Equation (III-28) may be generalized.

(I1-28)

Thus, consider the general network shown in Figure III-5.

3 § Z5

Figure I1I-5. General Network

The corresponding impedance function Z(s) may be written

1 (II-29)
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Inversely, if the given impedance function is expanded in the con-
tinued fraction form of Equation (III-29), the elements of the ladder network with
this impedance function will be as defined in Figure HOI-5.

This method will now be illustrated for the two types of functions
that were synthesized by this technique in the constant resistance ladder network

synthesis problem.

2
b) Continued Fraction Expansion for the Form: Z(s) =Z—i-—$§i§

Assume that the voltage transfer function for one stage of the de--
sired constant resistance ladder network comprises a simple lead term in the
numerator, and a quadratic lag term in the denominator. Then, the equations
relating the network transfer function of this stage to its branch network impedance
functions, as presented in section ITI-A, leadto the form presented above for one of
the impedances, namely Zb. This impedance has a pole at S = jw=*®, When this
impedance is found, the related branch impedance (Za) is determined from the
relation, Za =1+ Zb'. The method of impedance synthesis used is now explicitly
outlined,

By simple long division:

7 =asz+bs+c

‘ 1
b — =|as+(b-aw) _|+—§—:‘-o—— (1I-30)
L L
K
where K=c¢ - (b - a wL) wL.

It is observed that Equations (III-26) and (I1-30) have the same

form, and hence the following identification may be made:

Z1 =as+ (b - awL) (I11-31)
, s+ wL
Y2 =% (OI1-32)

The form of Equation (III-31) suggests the series combination of

an inductor, Ll’ and a resistor, Rl’ in series. Equating the impedance of such
a configuration with Equation (II1-31):
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Zl=Lls+Rl=as+(b—awL)
which leads to the identification:
Ij'1=a; R1=b-awL. (II1-33)

Equation (III-32) may be rewritten:

1 =ZI= K
Y2' 2 S+wL

(II1-32a)

The form of this equation suggests the use of a parallel combina-
tion of a capacitor, Cz, and a resistor, R2‘ Equating the impedance of such a con-
figuration with Equation (III-32a):

1

C2 _ x_

1 s+ W
L
R, C2

which leads to the identifications:

s+

K .
=% (I1-34)

Since the impedance is of the form of Equation (III-26), the net-
work will be of the form presented in Figure IIT-4 (b); it is again given in Figure III-6

with the specific impedances obtained for this case.

oM B Ly o

2 Rl ’b-OwL
__!_,_... | R C X :c-(b_
I 2 _r- 2 ’ OWL)W-L
S oul
|

Figure III-6. Branch Network Configuration

as2+bs +C
For Zb=—S—T_—LB-;——
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The related branch impedance function, Za’ for the Zb under

study is now considered. It is given as:

s + W
Z =1+Z Lo L (I1I-35)

b a s2 +bs+c
Substituting Equation (III-30) into Equation (III-35):

- 1 )
Za_1+as+(b—aw)+ K (OI-36)
L s + W
L
It is observed that Za has the form:
- 1
2= < T (1I-37)
+
2 Z3
where:
Z. =1
1 1 s + wL
2y Tastb-awy’ Z3TE® - (II-38); (II-39)
L

Equation (III-37) obviously dictates the use of a 1-ohm resistor for
Zl'. Z2 is synthesized by use of a parallel resistor-capacitor combination where
the component values, say, R2 and CZ’ are found by a procedure identical to that
used for Zzl in the synthesis of Zb. The values so obtained are:
R 1 C. =a. (II11-40)

2 b+awL 2

Z3 is obtained in a manner analogous to that used for Z 1 in the

synthesis of Za. The series inductor-resistor combination has the element values:

1

K

wr, ‘ (III-41)
K

The resulting impedance configuration is presented in Figure II-7.
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R =w.L/ K

zq
=1/K

P
[\\]
A
I
]
Nﬂ
W

c
L

2
3
K

\ R !
N\ R; :
2
B
g
i

= C—(b-owL)wL

8+ W
L

2
as +bs+c

Figure II-7. Branch Network for Z, =1+

2
¢) Continued Fraction Expansion for the Form: Z(s) =sz+b__£+_c
s +as

For the case where a stage of the constant resistance ladder net-

work is characterized by a voltage transfer function comprised of a lead quadratic

2
ny cases:

term and two simple lag terms, the corresponding value of Zb is, in many

Zb

=52+bs+c_ 1

2 2
s +as c+bs+s
as + s
1

c ,ab-¢ '
[;g:r . ]+ i 1 (I1-42)

b ey

This may be identified with the continued function expansion:;

_ 1
2y, =2y + 1

where:
(III-43)
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-1

-1 c_,ab-c |
= = |24 22"V 1-44
27 Y, [as T3 ] (-44)
a
a 1
Zo = + (I-45)

3 ab -c ab -c
[ 1 '( 2 ’] 8 [1 ‘Q 3 )]
a a
The form of Equation (III-44) suggests the choice of a parallel inductor-resistor
combination. If these choices are made and the coefficients of the resulting imped-

ance functions are equated with the appropriate coefficients in Equations (I1I-44) and

(III-45), the configuration presented in Figure III-8 is obtained.

o Zl =0
o}
Zb . 3 L2 =a/c
2 R‘2 R. = 02
R3 2 ab-¢

- (ob-¢
1~ (20 )]/o

-

2

2
Figure -8, Branch Network For Z, = S—%—b—s—"—c
s +as

The related branch impedance Za is given as:

_ -1
Za =1+ Zb
e ab - ¢ ™ 1
= [ =t <1 + a2 /]+ 5 N 1 (II1-46)
ab - ¢ ab -¢
[1-(252)]s [+-(259)]
a a
Equation (II-46) is recognized as having the form:
1
Z =2, + 5—
a 1 Y2
where:
_ c ab -c¢
2= e+ (14557 (IT1-47)
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and

ZZ:YZ_I: __a_ _1 1 -
e =

The form of Equation (II1-47) suggests a series resistor-capacitor
combination while the form of Equation (III-48) suggests a parallel inductor-resistor
combination. Computing the impedance functions associated with these element com-
binations and equating the coefficients of the resulting expressions with the appropriate
coefficients in Equations (1II-47) and (II1-48), the impedance configuration of Figure
II-9 is obtained. '

R, c, v [ob-c)
2
© W\ ﬁ'{ R = |+3.E.:£ L ,____\__u
z ! al 2 a
a
2¢ . 2 17 ¢ 2 a2
o J
Sz+as

2

Tigume MT-0  Rranch Network For Z_ =1+
i 5 Tu ST

3. Bott-Duffin Synthesis of Positive Real Minimum Impedances

For positive real, minimum impedance functions, it is not possible to
use the continued fraction synthesis technique. Since such a function has no poles
or zeros on the imaginary axis, the simplification process associated with removal

of such poles or zeros cannot be carried out.

Various techniques exist for synthesizing PR minimum impedance
functions, including Brune: Miyata and Bott-Duffin. The Brune' approach is not
favored since it involves the use of ideal transformers. A study was conducted
of the Miyata and Bott-Duffin procedures. It revealed that the latter yields a
simpler network realization for the classes of component transfer functions asso-
ciated with the various stages of the desired constant resistance ladder network.
Hence, the Bott-Duffin synthesis technique has been chosen for the positive real,

minimum, biquadratic impedance functions encountered in this application.
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Suppose the following conjecture is made: Itis possible to synthesize

any positive real minimum impedance Z(s) by the impedance topology presented

in Figure III-10,

namely:

a)

b)

If the above is to be true, certain conditions must be fulfilled,

If Z(s) is positive real, then each of the Zi 's composing the
topology must be positive real.

If any useful result is to be obtained, the Zi's must not be of
higher order than the original Z(s).

The Bott-Duffin method of impedance synthesis is based on the topology

Figure INI-10. Preliminary Impedance Topology

of Figure III-10 and the Richards function, R(s), which guarantees that the above

requirements are satisfied.

The Richards function is defined as follows: Given a positive real func-

tion Z of the complex variable s, the function is:

R(8) =

k Z(s) - s Z (k)
k Z(k) - sZ (s)

where R(s) has the properties

a)
b)

R(s) is positive real
R(s) is not of higher order than Z(s).

Equation (III-49) may be solved for Z(s) as:

Z(8) =

1 1

7 (k)ln () "£< zl(k) ] s [g_:@] . * gilsi))
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(k = positive number) (II-49)

+ . (I1-50)



From Figure III-10,

o 2L Rl I

positive real, and the Zi are also positive real.

Figure III-10 may be redrawn as shown in Figure II-11.

_ 1 1 1
A A A A O (I1-51)
c 2 L +
Z Z Z
c L
Equating coefficients between Equations (II-50) and (III-51):
)
Z, = Z (k) R(s) (I1-52)
_Z(k
Zy = R{s) (IT1-53)
-1
= [ = 1
Zg [kZ(k) S] ¢, s (II-54)
WhETE;
_ 1
17 XZ® (II-54a)
—3 Z—i‘é) = -
ZL X S L2 8 (II-55)
where:
L, = Z-gfl (II-55a)

Siuve, if D) iz PR then hoth its reciprocal and R(s) multiplied by a constant are

As indicated by the preceding development, the impedance topology of

Z,=Z(R(S) Z,=ZIK)/RIS)
Z(k)
¢y = 1/KZ(K) L, 1l
I+ TN

Figure III-11. First Inpedance Topology



The next problem is to determine the required value of k. The approach

used is to consider the'frequency, wl, at which Z is purely reactive, i. e.,

Re Z(s) |s=j s vanishes. If at this frequency the reactance is positive, R(s) is
1

chosen so that Z1 is a short circuit and Z2 is an open circuit. Hence, L2 repre-
sents Z at w, and an appropriate value of L2 may be calculated from the known
reactance and w, values. If the reactance is negative, a similar procedure may

be carried out with C1 representing Z at wl, instead of L The two cases are

0
worked out in detail in the subsequent paragraphs.

- i =i X X >
Case I Z(le) J)gland}il 0

From Equations (III-51), (III-54), and (III-55):

Z(jw)= 1 + 1 (111-586)
Voo _ 1 jw. C 1 L 1
Z,(w,) 171 Z,(Gw))  jw L

2

From Equations (III-52) and {II-53), if R(s) is required to have a zero
at w= wl, then:

Zl ( wl) =Z & R wl) =0, (OI-57)

Z, (@) =2 (&) R (jw) ==, (III-58)

In this case, the impedance topology at W= w
shown in Figure III-12,

1 may be represented as

LZ'Z(R)/ k
£11h

5tz s

(a) (b)

(Network (a) Equivalent to Network (b) )

Figure IlI-12. Impedance Topology at w=w, (Z (jw,) = iX;, X, > 0)
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Thus Z (j @) = L, s |s - ju, as desired (III-59)
X
or, L2 =6I . (I11-60)

Since both wl and )El are considered to be known, the requireer2 may be calculated.

An acceptable value for k (ko, real and positive) can be calculated from
Equations (III-55a) and (III-60) as:

Z(K,) X
T N
o 1

(I0-61)

Equations (II-52), (III-53), and (III-54a) may now be evaluaied, using this ko, to
yield the value of C1 and the functional forms of z, and Z2.

Since Z (s) has a pole at ju, then, for w, # 0, it must also have
apoleat -~ jw

1° Let Z1 (s) be written as follows:
-1 F1 (s)
Z, (8)= 2 \ (I1-62)
\s "1 7~9 7
where, again, Z Zy (8) is a PRM function and F, (s) and F,,(s) have no common

factors. lLet Zl'1 (s) be expanded as

(44 (o]

-1 1 2 1
2, (8) =773 + — 11-63
1 (s) s+3w1 s—le Z3(s) ( )
1t is easily shown that the residues, ozi are:
F, (- ju,) F, (jw;)
a, = 1 1 1 (I1-64)
1- -2 F(-jw)) ° % 2leF (@)
Equations (III-64) are of the form:
oy =a+ jb, Ot2 =a-jb. (11-65)
Since the PR condition requires that the ozi be real, the only choice is:
a, =0 =0=a, (111-66)

1 2
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Substituting Equation (III-66) into (III-63):

-1 208 1
Z (s) = + . (111-67)
1 52 N w12 Z3 (s)
Similarly,
20s
Z2 (8) = 5o + Z4(s) . (I1I-68)
s + wl )

These results are illustrated by the circuit diagram of Figure III-13.

Zl
—— -
| | i
l 23(5) l i—— —————— —-]|
' 2a$
| | | n s?_:wz —Z,00h |
: ez | } | ! |
|
— 25— [ | ] |
Lz I R |
> ! o ‘!: S11% .
c L2

(b)

NETWORK (q) EQUIVALENT TO NETWORX (b)
Figure III-13, Second Impedance Configuration (Z (j wl) =j )_(—:1. 21 > 0)

Assuming a series L3, C3 combination in parallel with Z3:

,
2 -
VA = 1 + L S“L3C S+1_’°*L3C3
LBC3 C3s 3 CSS fl—s
3
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Hence, the following identifications may immediately be made:
1 _ =L -
- =2¢orL;= 5o, (I1-69)

2 wlorc, =L =22 (LI1-70)
L,Cy 1 377 WZ 2
3“1 1

Assuming for a parallel L,, C, combination in series with Z &

_4 8
. _ C, _ L4s _ C4
3 2 - [ ]
L,Cy cl +L, s T4Cas 12, —-—-Llc
4 4 T4
Hence:
1 _ _1 _
—q—za or C4 Sa (I11-71)
L—l—é- = 12 or L, L y = 20‘2 ) (II-72)
T4 Cis¥y %

The circuit diagram courrespunding +o Cguntions (MT-ROY - (TTT-72) is

presented in Figure MI-14,

e
'H f?j L I

Figure II-14. Final Impedance Configuration (Z (j wl) =j Z , gl >0)
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In order for this approach to represent a valid synthesis procedure, the

impedances z3 and Z 4 must be simpler than the original Z, By the method used to

generate Z3 and Z 4’ i.e., via Equations (III-67) and (III-68), Z3 and Z 4 each

possess two less poles and zeros than Z. and Zz’ which are of the same order of

1
complexity as Z as may be seen from Equations (III-52) and (III-53). Hence, Z3

and Z4 each have two less poles and zeros than Z.

The above statements are illustrated by the following equation:

F(S)=gs+a)(s+bL= 2,8 a

(sz+ Cz) (s+d) s2 +C

3
2+ s+d°’

where:
~(a-d)(b-d)
a2+c?
It is seen that the last term on the right has two less poles and two less zeros than
the original function F (s). '

a

To synthesize high order impedance functions, this method may be iter-
ated using Z3 and Z 4 28 starting points for a second Bott-Duffin cycle. This is not
required with the constant resistance network approach since Z(s) is at most a

second order numerator divided by a second order denominator, In this case, Z

3
and Z4 will prove to be constant, i.e., resistances.
Case II - Z(jwl)=-j)£1, }51 >0
Suppose R (s) is required to possess a pole at s = jwl; then, from
Equations (III-52) and (II-53):
Zy(w)) =2 (k) R (s) ‘s=jw1'= ® (IO1-73)
Zy(jw)) =2 () R (s) | _ o, 7 0 (I11-74)

For this case the circuit representation is shown in Figure III~-18,
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- 00
; -
(o]

F

d

(0) (b)
NETWORK (0) EQUIVALENT TO NETWORXK (b)

Figure III-15, Circuit Representation at w= wl

i =i X X >
(Z (@) =-%,, X >0)

TN WAL o T i+ 3
L roin riguic II-15 it ic soan that:

AN A as weasme.

AN 2 U YU S
Zﬁwl)"1§1”'3<_cw1./°r cl""lx (II-75)

where X, and w, are both known so that C, may be calculated.

IfR(s)hasapoleats =j wl, then the denominator of Equation (III-49)
must vanish at this frequency, i.e.:

0=kZ(k-jw Z({w)=k2Z K -, 5§1 (111-76)

An acceptable value for k (ko’ real and positive) is obtained from
Equation II1-76,

Using this value of ko’ L, may be obtained from Equation (III-55a) and

the functional forms for Zl and Z2 from Equations (III-52) and (II-53).

Since Z1 (jw) has a pole at wl,’ as indicated by Equation (III-73), Zl

may be expressed as:

2 ozl 8
Z1 =g ¢ Z,. (I1-77)

. 3
s+ W
1

Since 22 (j w) has a zero at &, as indicated by Equation (III-74), Z2

1’
may be expressed as:
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1
z.l- L . L, (III-78)
2 92+ w12 Z4

The progress made so far is illustrated in Figure III-16.

(0) (b)
NETWORK (a) EQUIVALENT TO NETWORK (b)
Figure II1-16. Second Impedance Configuration

For a parallel L3 C3 configuration in series with Z

1
C

3:

w

Hence, equating elements:

1. c = L
?3——2&1 orC3- R (I11-79)
1
2o
o =w oL = 4 =L, (IT1-80)
33 03 wl wl
For a series L 4 C 4 combination in parallel with Z 4
1
82 + L, C
7 - 4 ~4
L,C 1 .
4 T4 TS
4
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For a series L 4 C 4 combination in parallel with Z 4

1 !
i——zal or L4—2_oz (II-81)
4 _ 1

2a
1 1 1 9%
LC, L2 T~ 73 (r-82)
. | ~4 1 i

The circuit diagram corresponding to Equations (III-79) - (INI-82) is
presented in Figure II-17.

z, z,
- — — 7 T T T T T -
| _-] l 24 l
I b3 Za I l c. I
B e i [ S SN gy
Ly 3 S 0 T I O C I
C LZ
© 4} > © rii
o o

Figure M-17. Final Impedance Configuration (Z (jw,) = - gl’ gl > Q)

Finally, the complexity of Z3 and Z 4 relative to Z for this case is the
same as that for the previous case, i.e., Z3 and Z 4 each have two less poles and
zeros than Z. Thus, for the Z's under consideration, Z3 and Z 4 will again prove
to be constant, and the synthesis is completed with the application of one Bott-Duffin

cycle.
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4, Modified Bott-Duffin Synthesis Procedure

Use of the modified Bott-Duffin synthesis procedure remedies the
sensitive, balanced bridge configuration of the Bott-Duffin network and reduces by
one -the number of elements required for a Bott-Duffin realization of a biquadratic
impedance function. As in the Bott-Duffin approach, two separate cases are treated
in the synthesis of 2 PRM impedance function Z(s): one where Z (j «;) =] }31 and the
other where .Z (j w,) = - j )31, }__fl >0,

s = s Sy <y >
Casel Z (le) J)_(_l, }il 0
| The Bott-Duffin approach outlined previously gives rise to an impedance
which is, in essence, a bridge configuration as is evidenced by Figure II-18. In

order for the bridge to be balanced, it is required that VlA = VlA' and VA2 = VA'2’

This condition may be written:;

\' \'
vl_A_ _ V1A (III-83)
A2 A2
where:
Via =11 25 Vypr=ig 2y, Vo =1 Zgy Vi =iy Zg (IT1-84)
[
o) y4 ‘L

Figure III-18. Equivalent Impedance of Figure III-10
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Substituting Equations (III-84) into (III-83) the balance condition is:
Z, Z2 = Zc ZL' (I1-85)
Substituting Equations (III-52), (OI-53), (II-54), and (III-55) into (I1I-85):

[zw=e] (5G] [*52] [}

22 (1) = 22 () .

Hence, the bridge is balanced and V AA' T 0 (independently of whether AA ’ are
connected or not). Since this is the case, any impedance may be connected across

’
aal 2 7.
‘&l..“-t nhanaine .-

Figure II-19 presents the final impedance configuration of Figure III-14
redrawn in such a way as to illustrate the procedure to be outlined.

7 ]
‘f'L A Ly l
| L o 1
P
°3 "3 l 1 Lz
i . Tt
LA ]
y4
3 ] z
o é

Figure II-19. Modified Impedance Topology of Figure III-14

It is seen that an impedance L has been connected across the terminals and the
impedance of Figure IlI-14 has been manipulated to put into evidence the T network
enclosed in the dotted line. It is desired to transform this network into an equiv-
alent delta configuration.
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o0

2 3 . |
8 C B o) z,¢ 12, 2"
‘2 —e— N o Z,4 1Tz, Tz, T I
z z z
z 0 . 0 0
3 b) 2, z,'zz 22'23'13
A
OA

z "z, ‘2""2 13+ 3 2,

Figure ImI-20. Delta-Tee Transformation

Figure III-20 summarizes the familiar A - T transformation, For the
network of interest, the following identifications are made:

A -
zl_Cls (I11-86)
1
L,s C,s L, s
_ 4 4 _ 4 _
270 54 L7 L,C e%+1 (=5
4 C,s
4
z,=Ls

e i) B[] o[ e

Ly+L (L (C1+Cy) 2., .
C 4 L. +L L,+L T, s +1
_ 1 1 4 _ 4 1 -89
- 2 - °cC 2 (IIE-89)
L4C4s +1 - 1 Ts +1

Since L is arbitrary, a favorable choice is one that makes T
Equating these quantities in Equation (I1I-89):
(C1+Cy)

LL,————— =L, C
4L1+L4 4 74

1=Tl
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which leads to the result:
L=L,C,/C,. (II1-90)
Substituting the value for L obtained in Equation (III-90) into (III-89):

L+L, L,
2, = c; =—% (€;+Cy. (II-91)
C,

From Equations (III-86), (II-88), (III-90), (III-91) and the expressionsfor Z. and
Z, in Figure II-20:

3
z L C,+C
o 4 1 4
Z,=—=C,8—, (C,+C)=L,C, | 5= |8 (II1-92)
1 z, 1 Cl2 1 4 4 4(01 C4 )
and
% LyCyrCy L rCH 1
23=%7. 2 = /L. C = 6. C¢.s° (I1-93)
3 Lsc, 4 4)0 2 1”4 '
c, "~ Cl+C4
The following definitions are now made:
C,C
174
C_= (111-94)
o C1 + C4
2 1 .
= . (I11-95)
“W "I,c,
Substituting Equations (III-94) and (III-95) into (II-92) and (II-93):
- _ 8 | -
zl~C 5—= L 8 (111-96)
o 1
and .
_ 1
Z3 = Co 5 . (I1-97)

The remaining impedance, Z2’ is obtained from Figure III-20 and
Equations (III-87) and (III-91) as: : '

2 2
z, [ Lye s L€, +Cy| L,c, 8%+
e L s 2 L2 - (I-98)
2 4 C1 C1 ]
c,+ ¢,
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Consider now a series impedance composed of an inductor L ‘and a
capacitor C’. The impedance, Z ', of this arm is (L' C’ 82 + 1)’ s)-l.
Equation Z ' with Z,, in Equation (II-98):

2

L4C4S +1 _ L/C/82+1
2 C’'s
C1 8
C,+C,
This expression leads to:
2
c’=§1+c =-2i-§1—-c (I11-99)
1% 2 4 °
and
2
, L4Cy LyCy Gy
L'=——=5G7¢ ~ o - (III-100)
Cc 10 C,C w
1 01

The circuit of Figure III-19 may now be drawn as shown in Figure aoi-21,

Consider the parallel configuration shown in the dashed lines of Figure

II-21b. From Equations (III-99) and (II1-100) it is seen that L'c’'= —1-2 and, from
w

Equation (II-69) L, C, = —=. 1
3 73 2
w
1
Thus,
ro 1
L C L3C3 —-——wz .
1
Hence
2
Z =L's+——]7"—= 1, [L'C'sz+1]= 1, [—8—- +1]
C’'s C's C's Ly 2
1
2
1 1 1 8
2,=L,8+ =— = 5— [LCs+1].=— [—-—— +1]
3 3 C3s C3s 373 Css w12
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The parallel combination, Z_, of these impedances is, therefore:

P
=2
’ 2 +
z 7z _9 (II-101)
P 2'+2, 8(C +Cy
—————
| {l—e I 1} p g %
» € | Co L
|8t © | Elo
e g | [ [T
c
cx L, | I Ihc3 |.__rmni3__=
| rwn—4- é {13'6\—6 T T T — L,
H-—— " ¢ 4 —o SN
23 3
$ o o , o

(a) PRELIMINARY CONFIGURATION (b) SECOND CONFIGURATION

Figure II-21. Modified Bott-Duffin Impedance Configuration

In order to identify the above impedance with a realizable impedance, consider the

series combination of an inductor L* and a capacitor C*., The impedance is:

2
* O%
Zr=Lra+ g =ECTE 2L (I-102)

Equating coefficients between Equations (III-101) and (II-102):

o~
C*=C '*'C3

and

> = — (1I-103)

L .
However, if L'c’'= L3 03’ then g— = i?,_ Hence, Equation (III-103) becomes:
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L
(II-104)

L*

3 _ 1
L 1 1 -
3 —_—+ =3
1+ ‘I—-"I‘ L3 L

The final Modified Bott-Duffin network assumes the form presented
in Figure IlI-22b, Figure III-22a presents the original Bott-Duffin network for

purposes of comparison.

Note that this procedure has two advantages:

a) one element has been eliminated;

b) the impedance is no longer in the form of a balanced bridge
and hence not so sensitive to component tolerances.

=i X X >
Case I Z(jwl) j)_(_l, )_gl 0

For the case where Z (j wl) =-j 21' a procedure similar to one utilized
above may be followed. The results are presented in Figure II-23.

An example of the application of the Bott-Duffin and modified Bott-Duffin
synthesis procedures to a biquadratic impedance function is presented in Appendix
B.

C, Cq
Co* ¢ +c
z, 1 Z4 1+Cq
L4 Z, (o] Coulz
o —g Cq e ¥
. C,+¢,
o6 ——
T d Z D WP~ N
1l LY ® 3
<L o o
(a) ORIGINAL CONFIGURATION (b) MODIFIED CONFIGURATION

Figure III-22, Final Modified Impedance Configuration
= i 4 X >
for Z (j wl) J )_(.1! )_(_1 0

62




L

sL,+L

*
} T——o c

Lo
YV —¢

(o]

{a) ORIGINAL CONFIGURATION (b) MODIFIED CONFIGURATION

Figure III-23. Final Modified Impedance Configuration
for 2 (jw,) =-j X, X, >0

5. Impedance Scaling for the Assumed Load Resistance

Section III-a demonstrated that for a constant resistance ladder network,

the branch impedances Za' and Zb' (Figure ITI-23) are related to the component
transfer function F(s) and the load resistance RL by the equations:

-

R

Zy

‘_ vl - :
Z, =Ry LF(s) 1_land z2,' =R [1+

+9

T

Z,

1

| ' Z,y"R
o .

+0

IN

L

@

Figure II1-24. Constant Resistance Ladder Network
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For the initial step in synthesis of the branch impedances, Za " and Zb', RL
is normalized to unity. Thus, the initial impedances, Za and Zb’ are given by:

| = F( ) 1land Z 1+ 7 . (H )

Z

The desired impedances are then obtained from Za and Zb by:

B .
, 1
= —_— - = -106
2y, =Ry F(s) 1 Ry 2y (ot )
RL_1 1
' _ - 2 1= -107
2, =R |1+ - R [1+ Zb} R, Z, (1I-107)
L b

The assumed load resistance for the NASA compensation network is RL =
800 ohms. Hence, the impedance elements of Za and Zb must be scaled up by a
factor of 800. This is accomplished as follows:

Resistors:
R - 800 R =R, ¢ /. (111-108)
Za’ Zb Za’ Zb Za i Zb
Inductors:
L - 800 L =1L_ . /. (II1-109)
2y 2y Zg 2y 2y %y
Capacitors: B Cza’ Zb
C —_— =C, ¢ re
Za’ Zb 800 Za . Zb (III-110)
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SECTION IV

TRANSFER FUNCTION FACTORING AND LADDER NETWORK SYNTHESIS

A. GENERAL
This section covers the following items:

1) factoring the over-all desired compensation function so as to yield
positive real, non-minimum component transfer functions that can
be realized as separaic stages of a constant resistance ladder network;

2) synthesis of the branch impedances of the various stages of the ladder
network using the previously described synthesis procedures;

3) modification of the factoring process so that the resulting ladder net-

work will have more reasonably sized passive elements and less DC atten-

uation. (Any such DC attenuation in the network must be compensated
by a gain factor in front of the network, and it is desired to minimize
the required signal amplification.)

B. INITIAL TRANSFER FUNCTION FACTORING

The desired compensation transfer function obtained by approximating the
gain-phase requirements given by NASA is: )

Lo (%2 ) (%) leze) o( H5)
L(4) L (2000) L(2000) Q(O;S Q( 45 Q(();gG

(This is actually the modified form of FII) (s), with a non-unity DC gain to be sub-
sequently compensated.) The numerator and denominator terms of FD(s) are linear

Fps) = (Iv-1)

or quadratic factors in s with real, positive coefflclents The notatlon L (wL) de-
notes a linear term, S + w s, while Q (ﬁ/wN) denotes S +2¢& u.hs + u.)N

The numerator and demominator terms must be grouped so that each com-~
N.
ponent transfer function b—l, of the over-all transfer function is a positive real,
i
non-minimum function. Figure IV-1 presents a simplified schematic of the initial
and subsequent iteration processes utilized in factoring the desired FD (s), subject
to the above conditions. The material presented in the following paragraphs of this

section is basically an elucidation of this figure.
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The denominator term Q(o"és can only be combined with the numerator
term L (20) to yield a PRNM function as defined in Appendix A. Of the two remain-
ing numerator forms present, that is, Q ( )and Q((l)z the denominator term

—4-5-> can only be combined with the numerator term Q( >to yield a PRNM

function. The denominator term Q(L— can be combined with one of the three

q@zgf actors in the numerator. The second Q 1 2 6 factor of the numerator can

be combined w1th the denominator terms, L(4) and L(2000).

Of the original factors, the fraction —L(_z—(_)(_ﬁ) then remains.

It i5 a non realizable transfer function, since the order of the numerator exceeds

the order of the denominator.

It now becomes necessary to introduce realizability factors of the form

%%} and f(lT)T , where a and b are real and positive and where b is large enough

to cause any significant gain-phase variation to lie beyond the frequency range of
interest. These introduced factors must be chosen so that when they are grouped
‘'with the remaining uncombined factors of the over-all transier function, the PRNN

requirement for each grouping will be satisfied.

The factors L(126) L(126) , and ——4-) were initially chosen, because it

L(126) * L(126) L(10
was felt that the resulting network realizations would not contain any large passive
elements and L(lO ) was well beyond the frequency range of interest. These factors

oi5e)

were grouped with ——5-—~ T(2000) into PRNM component transfer functions as follows:

0.4
o35 L(126) , . 1(126)
L(126) L(126) ° L1(2000) L(104) °

Thus, the over-all desired transfer function has been approximated by the
product of component transfer functions as follows:
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(s),F(l)( 1 g Q( ) Q\tzé) Q@ ?s) L(20) 9‘%2‘12
ig i Q( ) Q(O 96> L(4) L(2000) Q(o 26\ L(126) L(126)
L(126) L(126) (IV-2)

L(2000) [ ;4%
This is the transfer function for the first ladder network to be synthesized.

C. INITIAL LADDER NETWORK SYNTHESIS

To meet the realizability requirements for the branch impedances of the
individual stages of the ladder network, realizability gain factors, K,, are intro-
duced so that Ki Re = 1.0 as described in Appendix A. (Again, a

(J“) minimum

gain factor K, is to be provided external to the over-all ladder network, to compen-

T
sate for the Ki's thus introduced to provide a DC gain of unity,)

Each component transfer function of Equation (IV-~2) has been synthesized as
a separate stage of a constant resistance ladder network with the branch impedance

of the i th stage, Za and Zb , assuming unity load resistance, given by:
i
72, == -landZ_ =1+

b, F, 8y Zy,

~

In computing the element values for the branch impedance of each of these stages,
the specific techniques associated in Table HI-1 with the various forms of the
component t;'ansfer functions (inspeétion, continued fractions, Bott-Duffin) were
employed as previously described in detail in Section III. The impedance elements
were scaled by a factor of 800 to account for a load resistance of 800 ohms.

The resultant over-all ladder network configuration 1, with a transfer function
‘as given by Equation (IV-2), is shown in Figure IV-2, It contains 59 elements and
the over-all gain factor, KT’ that will yield the final required compensation network
given as 537, 600, The component transfer functions for each of the individual
stages of the ladder network are indicated, as well as the associated K1 and KT

values. i
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D. IMPROVED LADDER NETWORKS

A modification of the first factor grouping was suggested by the relative

magnitude of the K

! 3 3
T '8 (KT , KTG and KT7) in an effort to reduce the required

i 4 QG)__%)
over-all KT For the original remaining fraction 2 factors of the form

L(2000)’
0.4
L(a) 1 . . Q<126) L(a) .. in=1 4
L(a) and ®) were considered for grouping as T.(2000) L(a) * L(b) with b again=10",
Q (L /wy)
For the transfer function form—-—=—-+ the minimum value of the real part
(&) L(@,)
@y %
of the reciprocal generally occurs at w= 0, and this minimum value { o(w) = 5 -

20002 | The optimum value for the gain constants K, and K
(126)> '

result is achieved by setting:

w
are unity, ThisN
Ti .

2000 a = 15, 876
or a= 7.9%4.

However, with b = 104, the over-all gain factor K, for L(7.94)_ 1260. This
Ty Lot

1 i and combining L (7.94) with the fraction
L(10%)

suggested dropping the factor

F 4(s) = —Lo‘ﬂzbé- . Unfortunately, L(ZQg Ié'g 94) was not PRNM, and so this value
G( 45 % 45 '
for a had to be discarded.

Examination of the factors at this point indicated the following possibilities:

0.4 0.4
1(20) L(a) ) %3 L(b)
&28 with either 775566, T@) °F a) Lb) L(2000) °
45

Empirical numerical studies were conducted varying a and b, Some combinations

were immediately discarded because the factors were not PRNM,

Inevaluating the realizability gain factor K, for some of these transfer functions, three

36)
L(w,) L,

transfer functions of the )
2

form gave odd results; the real part of two of
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them had a minimum value at infinite frequency and for the third had the same
apparent minimum value at two different frequencies. Time did not permit further
investigation of the reasons for these peculiar results. One acceptable combina-
tion was discarded because the realization of the network required a passive ele-

ment of impractical size.

Minimizing the individual K,r values was one of the basic criteria throughout.

The transfer function for the second network configuration was considered a vast

improvement over the first. This transfer function is

=3 ¥ (s) = %.051) G(%@ QGL%) L(20) 1.(20) <10_éée> L(500)
(S O .

i 787N *70.96N L(4) L(2000) ;0.26Y L(20) L(500) L(2000)
1 45 45 / a5

and the corresponding network is presented in Figure IV-3. Seven ladder stages of
the first network were reduced to six, giving an %‘2—— form for F*(s) which required
a Bott-Duffin synthesis with 15 elements. Although this increased the over-all

number of network elements to 65 from the previous number of 59, the tremendous

reduction in over-all gain factor KT to 1736 was considered far more important.

Methods of refinement, which became appérent as these investigations con-

tinued, led to a further change in iue iacicr —zl(?-frnm a =20 toa=30. This third

configuration, shown in Figure IV-4, has a transfer function given by:

/0—3> ‘(1%) Q@%) L(20) L(30) Q:IO_-:%% L(500)

=~ w(3)
Fo(8)=F"(s) = Q( > Q(g 96 L(4) L(2000) Q(o.ze) L(30) L(500) L(2000)
45

This network has the same number of elements as network 2 (65), but the over-all
compensation gain factor KT has been reduced to 700.
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SECTIONV

SUMMARY AND CONCLUSIONS

Three constant-resistance ladder networks, that have voitage iransfer functions
meeting the gain-phase compensation requirements set by NASA with an assumed load
resistance of 800 ohms, have been synthesized. By iteration of the transfer function
factoring and network synthesis operation, a reasonably practical network configura-
tion has been realized. This network, presenied ii: Figurc IV-4, hag 85 nassive ele-
ments in its six cascaded stages. The required over-all compensation gain for it is
700. The maximum inductor size is 770. 6 henries and the maximum capacitor size
is 532 microfarads.

A schematic of the complete operation in going from the NASA gain-phase com-
pensation requirements to the final, improved network configuration is given in
Figure IV-4. The requirements for factoring the desired network transfer function
50 that these component transfer functions can be realized as stages of a constant
resistance ladder network are derived in section li-A andareswuinarizcdincection IV
For all realizable forms of these factors, section IiI-E deécribes the synthesis pro-
cedures to be used for the associated branch impedances (Table III-1), and section III-
B describes the application of these techniques in realizing the desired transfer
function. The evolution of the ladder compensation network to a more optimum con-
figuration is described in section IV and illustrated in Figure IV-1,

From the studies which have been completed, it would seem that further re-
finements are possible, starting from the first step of the over-all synthesis opera-
tion. The curve-fitting procedure should be re-evaluated with the difficulties of

realization of various types of factors taken into consideration.

Emphasis should be placed on minimizing the number of quadratic denom-
inator terms, because generally they must be synthesized by the Bott-Duffin
technique yielding a network of 15 elements, unless they are combinable with a

linear numerator term. The denominator quadratic form was inefficient in the
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NASA network where the power of the numerator and denominator polynonials were
the same. However, it could possibly be effectively utilized when such is not the
case, and it could be more easily synthesized by the continued fraction approach.

Quadratic form numerator terms should be combined with two linear form
denominator terms where possible, especially when additional realizability factors

are introduced by Ki and K, values are more easily optimized. The synthesis of

T
i
this form also may be accomplished via the continued fraction method.

Linear term fractions are simple to synthesize and should be combined where
possible, avoiding large KT values. The feasibility of this type of early planning
remains to be investigated. !

A satisfactorily effective procedure has been evolved for factoring a given
transfer function and synthesizing it by a constant resistance ladder network. How-
ever, additional work in this area could hopefully lead to simpler, more straight-
forward procedures for realization of a network which is generally optimum in terms

of its required compensation gain and the number and size of its passive elements.
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APPENDIX A

POSITIVE REAL NON-MINIMUM FUNCTIONS

A function, F(s), is called positive real (PR)
if F(s) is real when s is real and if the real part of RE Fljw)
F(s), Re F(8), is non-negative for Re(s) 2 0. This
definition is equivalent {o: \

1)  F(jw) has no poles or zeros in the 2
right half plane,

2) any poles or zeros of F(j w) on the
imaginary axis are simple with a
real positive residue,

3) ReF(iw)20for0<ws =, v

.

Two simple PR functions are shown in Figure A-1. Positive Real
Figure A-1. The (1) curve depicts a PR function Function
with a vanishing real part, termed a positive real,
minimum resistance function (PRMR). The (2) curve depicts a PR function
with a non-vanishing real part, termed a positive real, non-minimun function
(PRNM).

Figure A-2 presents the PRNM forms which are needed to apply the
constant resistance technique. For many transfer functions, a suitable
grouping of terms yields a product of PRNM terms. H this is not possible, the
simple technique next discussed may be used.

Suppose the given transfer function is:

F(s) = > N K 2 (A"l)
8 +2¢ w’7 B+ a.n

This is not a PRNM function; however, a factor F(s) can be introduced as
shown:



G(8) _ s+a o Ka

G(8) 32+2£wn8+wn2 s+a

F(s) = F(s)

where a is chosen 8o that (5) of Figure A-2 is satisfied.

Iy this way any stable transfer function may be realized as a product
of PRNM functions. Note that while the individual stage transfer functions
must be PRNM, the composite transfer function does not have to be PRNM.




T

? f(\)

£ (8)e = ! L FOR F,(8) TO BE PRNM,£ €, 1(x)
4 2 4 172
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Figure A-2. Positive Real, Non-Minimum (PRNM) Forms




APPENDIX B

BOTT-DUFFIN SYNTHESIS OF A BIQUADRATIC IMPEDANCE FUNCTION

As an example of the Bott-Duffin synthesis procedure, coneider the following

impedance function:

2
.3 . 2394.
Zb(S)=0 288 + 66.94 8 + 2394.5 . B-1)
8 + 20s + 400

The real part of Zb(s) is obtained from Equation (B-1) as:

(2394.5 — 0.38 w?) (400 - w?) - 1338. 8 «f

Re Z (s) = 5 B-2)
% (400 - of) © + 400 w?
from which it is found that
Re Zb(jw)=0atw= 39.82=0w, . B-3)
Substituting the value obtained in (B-3) into (B-1), it is found that:
uuzb(jul;;—jgl=-32.248. B-4)
Substituting Equations (B-3) and (B-4) into Equation (III-75)
C. = —L _=0.01117 farad. (B-5)
S 4

From Equations (B-3) and (B-4), w, __)El = 89. 52; substituting this value into Equation
(I1-76), there obtains:

k> - 59.4 k% + 1589.7 k - 94232 = 0. ®-6)
This then is solved for the positive value of k which is found to be

ko =59.3. B-7)

Substituting this value into Equation (B-1):

Z (k) = 1.5096. ' B-8)
Substituting (B-7) and (B-8) into Equation (III-55a):
Z(ko)
L2 =% = 0, 02546 henry. (B-9)
o




From Equations (11I-49) and (B-7) and (B-8):

2
R(S) =3.97 [3 + 64,378 + 1586 ] B-~10

82 + 1586

From Equations (B-10), (III-52), and (OI-53):

Zl =5.99

" 2

s +64.37s8 + 1586

5 82 + 1586

[~ 2 ’

Z, = 0.38 | 5 * 1586 .
Kl 64,375 s + 1586

Using the expansions given in Equations (III-77) and (III-78):

Zl - 385.58 +5.99
s + 1586
22—1= 1269. 29 + 2. 63.
s + 1586
Hence: 23 =5,99
Z4 = (.38.

From Equations (III-79), (III-80), (III-81), and (II-82):

C3 = 0,00259 farad ‘

\\
L3 = 0.2431 henry t1
C4 = 0,1067 farad ‘

L, = 0.00591 henry 1

From the equations of Figure III-23, the modified elements are:

C, = 0.002348 farad 4
Lo = 0.2686 henry

L* = 0,004883 henry
C* =0,1291 farad




As discussed in Section III, these passive element values correspond to a
normalized load resistance of 1 ohm. The elements scaled up to account for the
actual 800-ohm load resistance are as follows:

C1 = 13.96 microfarads
23 = 4792 ohms

Z 4= 304 ohimis

Co = 2,935 microfarads
Lo =214.9 henries

I*x =2 _90A henries

C* =161.3 microfarads




